Function Minimization for Dynamic Programming Using Connectionist Networks
نویسنده
چکیده
Learning controllers based on dynamic programming require some means of storing arbitrary functions and finding global minima within cross sections of those functions. There are many general methods for learning and representing functions, including polynomials, multi-layer perceptrons with backpropagation, and radial basis functions, but these systems do not allow the minima to be found easily. A method is presented here for learning and finding the minima of all cross sections of an arbitrary, smooth function. This method is applicable to any general function approximation system that learns smooth functions from examples. Mathematical properties of this approach are described, applications to learning control are discussed, and simulation results are presented.
منابع مشابه
Computational modeling of dynamic decision making using connectionist networks
In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...
متن کاملEnergy cost minimization in an electric vehicle solar charging station via dynamic programming
Environmental crisis and shortage of fossil fuels make Electric Vehicles (EVs) alternatives for conventional vehicles. With growing numbers of EVs, the coordinated charging is necessary to prevent problems such as large peaks and power losses for grid and to minimize charging costs of EVs for EV owners. Therefore, this paper proposes an optimal charging schedule based on Dynamic Programming (DP...
متن کاملALGORITHMS FOR BIOBJECTIVE SHORTEST PATH PROBLEMS IN FUZZY NETWORKS
We consider biobjective shortest path problems in networks with fuzzy arc lengths. Considering the available studies for single objective shortest path problems in fuzzy networks, using a distance function for comparison of fuzzy numbers, we propose three approaches for solving the biobjective prob- lems. The rst and second approaches are extensions of the labeling method to solve the sing...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملAn approximation algorithm and FPTAS for Tardy/Lost minimization with common due dates on a single machine
This paper addresses the Tardy/Lost penalty minimization with common due dates on a single machine. According to this performance measure, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Initially, we present a 2-approximation algorithm and examine its worst case ratio bound. Then, a pseudo-polynomial dynamic programming algorithm is de...
متن کامل